Maximally dense packings of two-dimensional convex and concave noncircular particles.
نویسندگان
چکیده
Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London) 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space R(d). While the original implementation was designed to study spheres and convex polyhedra in d≥3, our implementation focuses on d=2 and extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles (incorporating shapes resembling the Mercedes-Benz logo), and "moonlike" shapes. Analytical constructions are determined subsequently to obtain the densest known packings of these particle shapes. For the examples considered, we find that the densest packings of both convex and concave particles with central symmetry are achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can be used as a tuning parameter to achieve a diversity of packing structures.
منابع مشابه
Organizing principles for dense packings of nonspherical hard particles: not all shapes are created equal.
We have recently devised organizing principles to obtain maximally dense packings of the Platonic and Archimedean solids and certain smoothly shaped convex nonspherical particles [Torquato and Jiao, Phys. Rev. E 81, 041310 (2010)]. Here we generalize them in order to guide one to ascertain the densest packings of other convex nonspherical particles as well as concave shapes. Our generalized org...
متن کاملOptimal packings of superballs.
Dense hard-particle packings are intimately related to the structure of low-temperature phases of matter and are useful models of heterogeneous materials and granular media. Most studies of the densest packings in three dimensions have considered spherical shapes, and it is only more recently that nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs (whose shapes are define...
متن کاملOptimal packings of superdisks and the role of symmetry.
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x{1}|{2p}+|x{2}|{2p}or=0.5) and concave (0<p<0.5) particles. Our candidate maximal packing arrangements are achieved by certain familie...
متن کاملDistinctive features arising in maximally random jammed packings of superballs.
Dense random packings of hard particles are useful models of granular media and are closely related to the structure of nonequilibrium low-temperature amorphous phases of matter. Most work has been done for random jammed packings of spheres and it is only recently that corresponding packings of nonspherical particles (e.g., ellipsoids) have received attention. Here we report a study of the maxi...
متن کاملJammed Hard-Particle Packings: From Kepler to Bernal and Beyond
Understanding the characteristics of jammed particle packings provides basic insights into the structure and bulk properties of crystals, glasses, and granular media, and into selected aspects of biological systems. This review describes the diversity of jammed configurations attainable by frictionless convex nonoverlapping (hard) particles in Euclidean spaces and for that purpose it stresses i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2012